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Abstract. Insufficient attention to excitonic processes has been cited in criticism of single-
parameter models of the optical properties of solids. On the other hand, the thermally measured
energy gap,Eg , has been shown to be a useful predictor of linear and nonlinear susceptibilities of
indirect as well as direct gap materials. The explanation for such unanticipated correlations lies in
the fact that the virtual excitations that contribute to the real part of the dielectric response include
Wannier excitons with polycentric momentum distributions. When these excitations subsequently
decay into excitons with better defined momentum, and phonons, Frenkel’s selection rule, as
discussed by Wannier, applies. In the long wavelength dielectric response no such possibility
exists and the dominant excitations, whether in direct or in indirect gap materials, involvek-states
at valence band maxima and conduction band minima.

1. Introduction

It is an obvious feature of the dielectric response of insulating crystals that the bandgap and
the various linear and nonlinear response functions are inversely related. This qualitative
observation suggests the possibility of predicting dielectric response from a single parameter
as was indeed proposed by Penn [1]. The Penn gap is an average over the Brillouin zone
of the direct gap in accordance with the expectation that the virtual excitations contributing
to first-, second- and higher-order polarization energies leave thek-vector as a good
quantum number which is approximately conserved under optical excitation. However,
since Wannier’s paper of 1937 [2] it has been clear that, while Frenkel’s selection rule
(use of conserved crystal momentum to label excitations) would apply for real absorptive
processes, the virtual intermediate states are states for which thek-vector is not a good
quantum number. The implication of this for a single parameter model of real dielectric
response is that the distinction between direct and indirect processes should not be too rigidly
maintained in handling the virtual excitations involved in the real dielectric susceptibility.

The electron and hole wavepackets which together form a Wannier exciton are best
considered in momentum space and can be related to the momentum space representation
of hydrogen wavefunctions given by Podolsky and Pauling [3]. The implications of this way
of looking at things and, in particular, the possibility that it can reconcile band calculations
with the bond additivity approximation of Buckingham and Orr [4] are explored in section 2.

In section 3 the bond additivity approximation is applied to data for the second-order
nonlinear dielectric susceptibility of zinc-blende and wurtzite polymorphs of ZnS. The data
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appear to be compatible, at least, with the supposition that the dielectric response of a crystal
can be approximated by the dielectric response of its bonding electrons taken in pairs.

In the light of the discussion in section 2 of the connection between momentum space
representations of the electron and hole wave packets and the minimum exciton energy the
selection of gap parameter for a one-parameter fit of dielectric properties of semiconductors
and insulators is discussed in section 4. Using data from published compilations one-
parameter fits using the thermal energy gap and a certain indirect gap are presented.

Finally, in section 5, the prospect is assessed that some understanding of the dielectric
response of glasses, doped and otherwise, can be obtained using the approach outlined here.

2. Exciton intermediate states

In setting out the structure of excitons, Wannier [2] was at pains to make clear that these
were the virtual excited states of the crystal. It is the energy of such states that is crucial
to the evaluation of perturbative terms of various order that contribute to corresponding
dielectric response functions.

‘According to Wannier, the exciton is composed of an electron wave packet made
up of states from the conduction band, and a hole wave packet taken from the valence
band, multiplied by an envelope function depending on the relative electron–hole coordinate
re − rh.’—J C Phillips [5].

Hydrogen-like wavefunctions in momentum space given by Podolsky and Pauling [3]
make the relevant wavepackets easy to visualize. From the general wavefunction
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whereζ = np, one obtains [6] for the 1s, 2s and 2p states the momentum distributions
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wherep is measured in unitsαmc with α the fine structure constant. When the electron
wave packet has a momentum distribution that matches the many-valley conduction band
of an indirect gap semiconductor it is plausible that the thermal gap should be predictive of
the real optical response. For a many-valley conduction band such as those in silicon and
germanium construction of an electron wave packet with a view to minimizing the exciton
energy suggests an exciton diameter of the order of the nearest neighbour atomic spacing,
that is to say, the length of the bonds between atoms. In saying this it is presumed that the
phenomena in question can be understood in terms of states from the first zone and that,
consequently,Umklapp processes can be ignored. It is, therefore, reasonable to suggest
that the excitonic nature of virtual states may validate the bond additivity approximation of
polarizability and hyperpolarizability [4] even in its application to condensed matter. Some
evidence for the utility of the bond additivity approximation for the dielectric properties of
crystals is given in the next section.

The correct characterization of the intermediate states has implications for the discovery
of empirical relations between optical constants and bandgap parameters and this is discussed
in section 4. More importantly, difficulties in evaluating matrix elements in detailed
numerical modelling of the optical response [7] can be seen to arise because of an
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inappropriate choice of basis states. Matrix elements for Bloch states must be combined with
the correct phases, which for the virtual intermediate states define the exciton wavefunction,
if the correct dielectric response functions are to be obtained.

3. Bond additivity for polymorphs of ZnS

The nearest neighbour zinc–sulphur bonds in wurtzite can be assigned a second-order
hyperpolarizability on the basis of the second-order dielectric susceptibility tensor elements
reported by Patel [8]. On the assumption that the bond hyperpolarizabilities remain the
same in the zinc-blende structure, the second-order susceptibility of this polymorph can
then be calculated and subsequently compared with experiment. In the wurtzite structure
there are seven different zinc–sulphur bond orientations and two independent susceptibility
tensor elements while in cubic zinc-blende there are only four bond orientations leading to
one independent tensor element. A polar bond between two atoms has two second-order
hyperpolarizability constants. Consequently this problem is solvable in the form posed
provided that it is well conditioned.

The second-order dielectric susceptibility tensor for wurtzite has the form [9]

0 0 0 0 d15 0

0 0 0 d15 0 0

d15 d15 d33 0 0 0

with d15 = −19 pm V−1 and d33 = +37 pm V−1. Orthogonal transformation gives the
bond hyperpolarizabilitiesβ15 andβ33 in a similar tensor as(ε0/2n)(−14.4 pm V−1) and
(ε0/2n)(−22.5 pm V−1) where 2n is the number of zinc–sulphur bonds per unit volume of
crystal. From this, with further orthogonal transformations, the second-order susceptibility
tensor for zinc-blende is

0 0 0 d14 0 0

0 0 0 0 d14 0

0 0 0 0 0 d14

with d14 = +32 pm V−1. This is to be compared with a measured value of+30 pm V−1

[8].
The bond additivity approximation of dielectric response is attractive for its simplicity

and transparency. If the argument for its applicability given in section 2 is indeed valid,
then applications such as those described in section 5 will surely follow.

4. Single-parameter prediction of dielectric response

Dielectric susceptibility constants of increasing order arise from correspondingly higher-
order corrections to the energy of the material in an external electric field. When the
frequency of the field is far below the interband resonance, the corrections contain in their
denominators increasing powers of the bandgap energy. One may suppose that such long
wavelength susceptibilities of thenth order go inversely as the gap energy to the powern.
Figure 1 shows that this is indeed approximately the case when the thermal energy gap
is used as the gap parameter. The susceptibility constants used for figure 1 are shown in
table 1 which is taken from the compilations in [9]. Where widely different values of a
constant are quoted, as for example forχ(3) of germanium, a geometrical average has been
used. The placings of the lines showing inverse linear, quadratic and cubic dependence in
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Figure 1. Linear and nonlinear susceptibilities.

Table 1. Nonlinear susceptibilities from the data compiled in [9].

BandgapEg χ(2) χ(3)

Material (eV) χ(1) (pm V−1) (pm2 V−2)

BN 6.0 3.4
AlSb 1.6 8.9
GaP 2.3 8.6 100
GaAs 1.5 11.3 173 100 000
GaSb 0.8 13.4 370
InP 1.4 8.6
InAs 0.4 10.8 260
InSb 0.23 15 580
ZnS 3.6 3.8 30
ZnSe 2.6 5.3 80
ZnTe 2.3 90
CdS 2.5 4.3 8000
CdTe 1.5 60
KCl 8.5 270
CuCl 3.39 2.7 10
CuBr 3.07 3.5 10
CuI 3.11 4.5
Ge 0.66 15 700 000
Si 1.08 15 51 000
SiC 3.1 5.7
SiO2 10 1.1 150

figure 1 are not arbitrary but have been determined from bond (hyper)polarizabilities using
ea0, wherea0 is the first Bohr radius, to estimate the electric dipole matrix elements and
the gap energy for the excited state energy.
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Figure 2. Gap dependence of second-order susceptibility.

Table 2. Bandgap parameters for zinc-blende polymorphs extracted from [10].

Thermal gap Indirect gap χ(2)

Material (eV) (eV) (pm V−1)

GaP 2.3 2.3 100
GaAs 1.5 1.7 173
GaSb 0.8 1.65 370
InAs 0.4 1.5 260
InSb 0.23 1.6 580
ZnS 3.6 5.3 30
ZnSe 2.6 4.5 80
ZnTe 2.3 3.8 90
CdTe 2.0 3.5 60

While the inverse cubic dependence of the third-order nonlinear dielectric susceptibility
in figure 1 is quite convincing, a question remains as to which bandgap parameter gives
the best one-parameter fit. From what has been said before the lowest energy virtual
intermediate excitations, which are the ones that dominate the perturbative sums, are built
from electron and hole wave packets that exploit energy minima in the conduction band
and energy maxima in the valence band. This being so, the thermal gap is likely to give
a better fit to the dielectric properties than the direct gap. However, an electric dipole
selection rule makes direct gap materials exceptional. If the hole wave packet is a 1s state,
built from k-states near the zone centre, the electron wave packet for an allowed excitation
may be a 2p, but not a 1s or 2s, state. Consequently a conduction band minimum at the
zone centre is irrelevant to the construction of the required electron wave packet. What one
needs arek-states near conduction band minima away from the zone centre. By choosing an
indirect gap parameter, taken from the band structure calculations of Cohen and Bergstresser
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[10] and summarized in table 2, one finds that the one-parameter fit of the second-order
nonlinear susceptibility,χ(2), shows the expected inverse gap parameter squared dependence
(figure 2).

In this section it has been shown that the thermal energy gap is roughly predictive of low
frequency, sub-bandgap, optical constants but that attention to the structure of intermediate
states allows even better one-parameter fits to tabulated data.

5. Optical properties of glasses and colour centres

While there are four distinct bond orientations in the zinc-blende structure and seven in
wurtzite, high temperatureβ-quartz has 12 bond orientations. Thus, in crystalline materials,
computation of bulk properties using the bond additivity approximation is straightforward
if tedious. One reason for wanting to validate the bond additivity approximation is that it
offers a way of understanding otherwise intractable problems such as the optical properties of
glasses containing point defects. Application of the approximation to the extrinsic properties
of crystals and glasses will generally be quite straightforward. Once the structure of a defect
has been determined and represented in terms of the new bonds created, fitting of optical
properties by bond polarizabilities involves only a small number of tensor transformations
and additions.

Table 3. Sources of experimental data on intrinsic and extrinsic contributions to fused silica
susceptibilities.

Extrinsic

Susceptibility Intrinsic Substituted Ge Ge: lone pair Ge:E′ OH−

χ(1) yes [11] yes [12] yes [14] yes [13]
χ(2) (pm V−1) yes [14]
χ(3) (pm2 V−2) yes [9]

Table 3 shows some properties of fused silica for which experimental data are available
which could enable the polarizabilities of various intrinsic and extrinsic bonds to be
determined. One problem made accessible by this approach is that of predicting the changes
brought about by point defect orientation. Such reorientation is relevant to field and light
inducedχ(2) susceptibility in glass waveguides and the production thereby of electro-optic
and nonlinear components.

6. Conclusion

The excitonic nature of virtual intermediate states contributing to the long wavelength
dielectric response of crystals has been explored in the context of Wannier’s description of
excitons and Podolsky and Pauling’s analysis of hydrogen-like states in momentum space.
It has been established that one-parameter fits are able to predict the linear and nonlinear
dielectric properties of crystalline insulators. The facts that the bandgap parameter used
in such fits needs to reflect the excitonic nature of the intermediate states and that energy
considerations favour rather localized electron and hole wave packets suggest the possibility
of applying the bond additivity approximation to crystalline media. Further tests of this
approximation should now be made to establish its value in understanding the influence of
point defects on optical properties of both crystals and glasses.
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